Algorithm——Stack and Queue

栈和队列

1. 理论基础

栈是以底层容器完成其所有的工作,对外提供统一的接口,底层容器是可插拔的(也就是说我们可以控制使用哪种容器来实现栈的功能)。

2. 用栈实现队列

232.请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾

  • int pop() 从队列的开头移除并返回元素

  • int peek() 返回队列开头的元素

  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

  • 说明:

你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]

解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

思路

使用栈来模式队列的行为,如果仅仅用一个栈,是一定不行的,所以需要两个栈一个输入栈,一个输出栈,这里要注意输入栈和输出栈的关系。

下面动画模拟以下队列的执行过程:

执行语句:
queue.push(1);
queue.push(2);
queue.pop(); 注意此时的输出栈的操作
queue.push(3);
queue.push(4);
queue.pop();
queue.pop();注意此时的输出栈的操作
queue.pop();
queue.empty();

232.stacktoq.gif在push数据的时候,只要数据放进输入栈就好,但在pop的时候,操作就复杂一些,输出栈如果为空,就把进栈数据全部导入进来(注意是全部导入),再从出栈弹出数据,如果输出栈不为空,则直接从出栈弹出数据就可以了。

最后如何判断队列为空呢?如果进栈和出栈都为空的话,说明模拟的队列为空了。

在代码实现的时候,会发现pop() 和 peek()两个函数功能类似,代码实现上也是类似的,可以思考一下如何把代码抽象一下

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// 使用两个数组的栈方法(push, pop) 实现队列
/**
* Initialize your data structure here.
*/
var MyQueue = function() {
this.stackIn = [];
this.stackOut = [];
};

/**
* Push element x to the back of queue.
* @param {number} x
* @return {void}
*/
MyQueue.prototype.push = function(x) {
this.stackIn.push(x);
};

/**
* Removes the element from in front of queue and returns that element.
* @return {number}
*/
MyQueue.prototype.pop = function() {
const size = this.stackOut.length;
if(size) {
return this.stackOut.pop();
}
while(this.stackIn.length) {
this.stackOut.push(this.stackIn.pop());
}
return this.stackOut.pop();
};

/**
* Get the front element.
* @return {number}
*/
MyQueue.prototype.peek = function() {
const x = this.pop();
this.stackOut.push(x);
return x;
};

/**
* Returns whether the queue is empty.
* @return {boolean}
*/
MyQueue.prototype.empty = function() {
return !this.stackIn.length && !this.stackOut.length
};

3. 用队列实现栈

225.请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。

  • int pop() 移除并返回栈顶元素。

  • int top() 返回栈顶元素。

  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false

注意:

你只能使用队列的基本操作 —— 也就是 push to back、peek/pop from front、size 和 is empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
输入: nums = [-1,0,3,5,9,12], target = 9     
输出: 4
解释: 9 出现在 nums 中并且下标为 4输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]

解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False

思路

根据题意,要用两个队列来实现栈,首先我们知道,队列是先进先出,栈是后进先出。

知道了以上要点,我们两个队列的用处也就一目了然了。

一个队列为主队列,一个为辅助队列,当入栈操作时,我们先将主队列内容导入辅助队列,然后将入栈元素放入主队列队头位置,再将辅助队列内容,依次添加进主队列即可。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// 使用两个队列实现
/**
* Initialize your data structure here.
*/
var MyStack = function() {
this.queue1 = [];
this.queue2 = [];
};

/**
* Push element x onto stack.
* @param {number} x
* @return {void}
*/
MyStack.prototype.push = function(x) {
this.queue1.push(x);
};

/**
* Removes the element on top of the stack and returns that element.
* @return {number}
*/
MyStack.prototype.pop = function() {
// 减少两个队列交换的次数, 只有当queue1为空时,交换两个队列
if(!this.queue1.length) {
[this.queue1, this.queue2] = [this.queue2, this.queue1];
}
while(this.queue1.length > 1) {
this.queue2.push(this.queue1.shift());
}
return this.queue1.shift();
};

/**
* Get the top element.
* @return {number}
*/
MyStack.prototype.top = function() {
const x = this.pop();
this.queue1.push(x);
return x;
};

/**
* Returns whether the stack is empty.
* @return {boolean}
*/
MyStack.prototype.empty = function() {
return !this.queue1.length && !this.queue2.length;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// 使用一个队列实现
/**
* Initialize your data structure here.
*/
var MyStack = function() {
this.queue = [];
};

/**
* Push element x onto stack.
* @param {number} x
* @return {void}
*/
MyStack.prototype.push = function(x) {
this.queue.push(x);
};

/**
* Removes the element on top of the stack and returns that element.
* @return {number}
*/
MyStack.prototype.pop = function() {
let size = this.queue.length;
while(size-- > 1) {
this.queue.push(this.queue.shift());
}
return this.queue.shift();
};

/**
* Get the top element.
* @return {number}
*/
MyStack.prototype.top = function() {
const x = this.pop();
this.queue.push(x);
return x;
};

/**
* Returns whether the stack is empty.
* @return {boolean}
*/
MyStack.prototype.empty = function() {
return !this.queue.length;
};

4. 有效的括号

20.给定一个只包括 ‘(‘,’)’,’{‘,’}’,’[‘,’]’ 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。

  2. 左括号必须以正确的顺序闭合。

  3. 每个右括号都有一个对应的相同类型的左括号

1
2
输入:s = "()"
输出:true
1
2
输入:s = "()[]{}"
输出:true
1
2
3
4
5
6
7
8
9
10
11
12
13
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]

解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

思路

先来分析一下 这里有三种不匹配的情况,

  1. 第一种情况,字符串里左方向的括号多余了 ,所以不匹配。 括号匹配1

  2. 第二种情况,括号没有多余,但是 括号的类型没有匹配上。 括号匹配2

  3. 第三种情况,字符串里右方向的括号多余了,所以不匹配。 括号匹配3

我们的代码只要覆盖了这三种不匹配的情况,就不会出问题,可以看出 动手之前分析好题目的重要性。

动画如下:

20.有效括号

第一种情况:已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false

第二种情况:遍历字符串匹配的过程中,发现栈里没有要匹配的字符。所以return false

第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号return false

那么什么时候说明左括号和右括号全都匹配了呢,就是字符串遍历完之后,栈是空的,就说明全都匹配了。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* @param {string} s
* @return {boolean}
*/
var isValid = function(s) {
const stack = [],
map = {
"(":")",
"{":"}",
"[":"]"
};
for(const x of s) {
if(x in map) {
stack.push(x);
continue;
};
if(map[stack.pop()] !== x) return false;
}
return !stack.length;
};

5. 删除字符串中的所有相邻重复项

给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。

在 S 上反复执行重复项删除操作,直到无法继续删除。

在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。

1
2
3
4
输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。

思路

本题也是用栈来解决的经典题目。

那么栈里应该放的是什么元素呢?

我们在删除相邻重复项的时候,其实就是要知道当前遍历的这个元素,我们在前一位是不是遍历过一样数值的元素,那么如何记录前面遍历过的元素呢?

所以就是用栈来存放,那么栈的目的,就是存放遍历过的元素,当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。

然后再去做对应的消除操作。 如动画所示:

1047.删除字符串中的所有相邻重复项

从栈中弹出剩余元素,此时是字符串ac,因为从栈里弹出的元素是倒序的,所以再对字符串进行反转一下,就得到了最终的结果。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/**
* @param {string} s
* @return {string}
*/
var removeDuplicates = function(s) {
const result = []
for(const i of s){
if(i === result[result.length-1]){
result.pop()
}else{
result.push(i)
}
}
return result.join('')
};

6. 逆波兰表达式求值

  1. 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 ‘+’、’-‘、’*’ 和 ‘/‘ 。

  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。

  • 两个整数之间的除法总是 向零截断 。

  • 表达式中不含除零运算。

  • 输入是一个根据逆波兰表示法表示的算术表达式。

  • 答案及所有中间计算结果可以用 32 位 整数表示。

1
2
3
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
1
2
3
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
1
2
3
4
5
6
7
8
9
10
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

思路

逆波兰表达式:是一种后缀表达式,所谓后缀就是指运算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。

该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。

  • 适合用栈操作运算:遇到数字则入栈;遇到运算符则取出栈顶两个数字进行计算,并将结果压入栈中。

本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么这岂不就是一个相邻字符串消除的过程,和删除字符串中的所有相邻重复项 中的对对碰游戏是不是就非常像了。

如动画所示: 150.逆波兰表达式求值

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* @param {string[]} tokens
* @return {number}
*/
var evalRPN = function (tokens) {
const stack = [];
for (const token of tokens) {
if (isNaN(Number(token))) { // 非数字
const n2 = stack.pop(); // 出栈两个数字
const n1 = stack.pop();
switch (token) { // 判断运算符类型,算出新数入栈
case "+":
stack.push(n1 + n2);
break;
case "-":
stack.push(n1 - n2);
break;
case "*":
stack.push(n1 * n2);
break;
case "/":
stack.push(n1 / n2 | 0);
break;
}
} else { // 数字
stack.push(Number(token));
}
}
return stack[0]; // 因没有遇到运算符而待在栈中的结果
};

7. 滑动窗口最大值

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回 滑动窗口中的最大值 。

1
2
3
4
5
6
7
8
9
10
11
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
1
2
输入:nums = [1], k = 1
输出:[1]

思路

维护单调递减队列,当进入滑动窗口的元素大于等于队尾的元素时 不断从队尾出队,直到进入滑动窗口的元素小于队尾的元素,才可以入队,以保证单调递减的性质,当队头元素已经在滑动窗口外了,移除对头元素,当i大于等于k-1的时候,单调递减队头就是滑动窗口的最大值

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var maxSlidingWindow = function (nums, k) {
const q = [];//单递减的双端队列
const ans = [];//最后的返回结果
for (let i = 0; i < nums.length; i++) {//循环nums
//当进入滑动窗口的元素大于等于队尾的元素时 不断从队尾出队,
//直到进入滑动窗口的元素小于队尾的元素,以保证单调递减的性质
while (q.length && nums[i] >= nums[q[q.length - 1]]) {
q.pop();
}
q.push(i);//元素的索引入队
while (q[0] <= i - k) {//队头元素已经在滑动窗口外了,移除对头元素
q.shift();
}
//当i大于等于k-1的时候,单调递减队头就是滑动窗口的最大值
if (i >= k - 1) ans.push(nums[q[0]]);
}
return ans;
};

8. 前 K 个高频元素

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

1
2
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
1
2
输入: nums = [1], k = 1
输出: [1]

思路

寻找前k个最大元素流程如图所示:(图中的频率只有三个,所以正好构成一个大小为3的小顶堆,如果频率更多一些,则用这个小顶堆进行扫描)

347.前K个高频元素

代码

1
2
3
4
5
6
7
8
9
let topKFrequent = function(nums, k) {
let map = new Map(), arr = [...new Set(nums)]
nums.map((num) => {
if(map.has(num)) map.set(num, map.get(num)+1)
else map.set(num, 1)
})

return arr.sort((a, b) => map.get(b) - map.get(a)).slice(0, k);
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
let topKFrequent = function(nums, k) {
let map = new Map(), heap = [,]
nums.map((num) => {
if(map.has(num)) map.set(num, map.get(num)+1)
else map.set(num, 1)
})

// 如果元素数量小于等于 k
if(map.size <= k) {
return [...map.keys()]
}

// 如果元素数量大于 k,遍历map,构建小顶堆
let i = 0
map.forEach((value, key) => {
if(i < k) {
// 取前k个建堆, 插入堆
heap.push(key)
// 原地建立前 k 堆
if(i === k-1) buildHeap(heap, map, k)
} else if(map.get(heap[1]) < value) {
// 替换并堆化
heap[1] = key
// 自上而下式堆化第一个元素
heapify(heap, map, k, 1)
}
i++
})
// 删除heap中第一个元素
heap.shift()
return heap
};

// 原地建堆,从后往前,自上而下式建小顶堆
let buildHeap = (heap, map, k) => {
if(k === 1) return
// 从最后一个非叶子节点开始,自上而下式堆化
for(let i = Math.floor(k/2); i>=1 ; i--) {
heapify(heap, map, k, i)
}
}

// 堆化
let heapify = (heap, map, k, i) => {
// 自上而下式堆化
while(true) {
let minIndex = i
if(2*i <= k && map.get(heap[2*i]) < map.get(heap[i])) {
minIndex = 2*i
}
if(2*i+1 <= k && map.get(heap[2*i+1]) < map.get(heap[minIndex])) {
minIndex = 2*i+1
}
if(minIndex !== i) {
swap(heap, i, minIndex)
i = minIndex
} else {
break
}
}
}

// 交换
let swap = (arr, i , j) => {
let temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
}